Factor inhibiting hypoxia-inducible factor (FIH) and other asparaginyl hydroxylases.

نویسندگان

  • D E Lancaster
  • M A McDonough
  • C J Schofield
چکیده

FIH (Factor inhibiting hypoxia-inducible factor), an asparaginyl beta-hydroxylase belonging to the super-family of 2-oxoglutarate and Fe(II)-dependent dioxygenases, catalyses hydroxylation of Asn-803 of hypoxia-inducible factor, a transcription factor that regulates the mammalian hypoxic response. Only one other asparaginyl beta-hydroxylase, which catalyses hydroxylation of both aspartyl and asparaginyl residues in EGF (epidermal growth factor)-like domains, has been characterized. In the light of recent crystal structures of FIH, we compare FIH with the EGFH (EGF beta-hydroxylase) and putative asparagine/asparaginyl hydroxylases. Sequence analyses imply that EGFH does not contain the HXD/E iron-binding motif characteristic of most of the 2-oxoglutarate oxygenases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH).

Studies on hypoxia-sensitive pathways have revealed a series of Fe(II)-dependent dioxygenases that regulate hypoxia-inducible factor (HIF) by prolyl and asparaginyl hydroxylation. The recognition of these unprecedented signaling processes has led to a search for other substrates of the HIF hydroxylases. Here we show that the human HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also e...

متن کامل

Structure of factor-inhibiting hypoxia-inducible factor 1: An asparaginyl hydroxylase involved in the hypoxic response pathway.

Precise regulation of the evolutionarily conserved hypoxia-inducible transcription factor (HIF) ensures proper adaptation to variations in oxygen availability throughout development and into adulthood. Oxygen-dependent regulation of HIF stability and activity are mediated by hydroxylation of conserved proline and asparagine residues, respectively. Because the relevant prolyl and asparginyl hydr...

متن کامل

Tuning the Transcriptional Response to Hypoxia by Inhibiting Hypoxia-inducible Factor (HIF) Prolyl and Asparaginyl Hydroxylases*

The hypoxia-inducible factor (HIF) system orchestrates cellular responses to hypoxia in animals. HIF is an α/β-heterodimeric transcription factor that regulates the expression of hundreds of genes in a tissue context-dependent manner. The major hypoxia-sensing component of the HIF system involves oxygen-dependent catalysis by the HIF hydroxylases; in humans there are three HIF prolyl hydroxylas...

متن کامل

Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803.

Asparagine-803 in the C-terminal transactivation domain of human hypoxia-inducible factor (HIF)-1 alpha-subunit is hydroxylated by factor inhibiting HIF-1 (FIH-1) under normoxic conditions causing abrogation of the HIF-1alpha/p300 interaction. NMR and other analyses of a hydroxylated HIF fragment produced in vitro demonstrate that hydroxylation occurs at the beta-carbon of Asn-803 and imply pro...

متن کامل

The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity

Hypoxic and oxidant stresses can coexist in biological systems, and oxidant stress has been proposed to activate hypoxia pathways through the inactivation of the 'oxygen-sensing' hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. Here, we show that despite reduced sensitivity to cellular hypoxia, the HIF asparaginyl hydroxylase--known as FIH, factor inhibiting HIF--is strikingl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 32 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2004